Hybrid Taguchi-chaos of Artificial Bee Colony Algorithm for Global Numerical Optimization
نویسندگان
چکیده
In this paper, a new evolutionary learning algorithm is proposed by hybridizing the Taguchi method and chaos artificial bee colony (CABC). The algorithm is thus called HTCABC. First, the chaos search algorithm and adaptive bound method is adopted to improve the ABC performance and convergence rate. Then, the Taguchi method and crossover operation are incorporated into the CABC to produce good food sources, thus accelerating the search capacity. The Taguchi method has also been utilized to establish a proper balance between the exploration and exploitation by incorporating the information from the best global solution into the solution search equation. Third, the natural phenomenon of the elite strategy is adopted and the recruitment of new scout bees is used for HTCABC, which can have a rapid convergence rate maintain the diversity of the population, and escape from local optima. Additionally, there is no complex parameter setting in the algorithm design. Therefore, the HTCABC can be a more robust, quickly convergent and more accurate optimal solution. Finally, the algorithm is examined by using a set of benchmarks and the proposed approach is effectively applied to solve the parameter identification of a chaotic system. Simulation results show that the proposed algorithm is more efficient than the existing algorithm reported in the literature.
منابع مشابه
Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملOPTIMIZATION OF RC FRAMES BY AN IMPROVED ARTIFICIAL BEE COLONY ALGORITHM
A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during...
متن کاملOptimization of Combined Heat and Power Systems using a Hybrid Algorithm of Ant and Bee Colony Optimization
Abstract: In the last few years, due to the development of the new equipment in power systems, challenges have appeared in their planning and operation. One of these issues is the development of combined heat and power (CHP) units. These units have the capability to generate heat and electricity simultaneously according to their limitations. Hence, it is necessary for them to think about the ar...
متن کاملHBBABC: A Hybrid Optimization Algorithm Combining Biogeography Based Optimization (BBO) and Artificial Bee Colony (ABC) Optimization For Obtaining Global Solution Of Discrete Design Problems
Artificial bee colony optimization (ABC) is a fast and robust algorithm for global optimization. It has been widely used in many areas including mechanical engineering. Biogeography -Based Optimizat ion (BBO) is a new biogeography inspired algorithm. It mainly uses the biogeography-based migration operator to share the information among solutions. In this work, a hybrid algorithm with BBO and A...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کامل